Coefficiente angolare - puzzle online

Coefficiente angolare

In geometria analitica il coefficiente angolare (in lingua inglese slope, pendenza) di una retta non verticale nel piano cartesiano è il coefficiente

m

{\displaystyle m}

che compare nella sua equazione, scritta nella forma:

y

=

m

x

+

q

{\displaystyle y=mx+q\;}

.Partendo dai coefficienti dell'equazione generale

a

x

+

b

y

+

c

=

0

{\displaystyle ax+by+c=0}

,con

b

0

{\displaystyle b\neq 0}

(retta non verticale), il coefficiente angolare è espresso dal rapporto

m

=

a

b

{\displaystyle m=-{\frac {a}{b}}}

.Due rette (non verticali) sono parallele esattamente quando hanno lo stesso coefficiente angolare; in particolare, il coefficiente angolare della retta passante per l'origine,

y

=

m

x

{\displaystyle y=mx}

è la tangente degli angoli formati dalla retta con l'asse delle ascisse: la retta infatti passa per il punto di coordinate

(

x

1

,

y

1

)

=

(

cos

(

α

)

,

sin

(

α

)

)

{\displaystyle (x_{1},y_{1})=(\cos(\alpha ),\sin(\alpha ))}

, quindi

m

=

y

1

x

1

=

sin

(

α

)

cos

(

α

)

=

tan

(

α

)

{\displaystyle m={\frac {y_{1}}{x_{1}}}={\frac {\sin(\alpha )}{\cos(\alpha )}}=\tan(\alpha )}

.Il coefficiente angolare di una retta (non verticale) è il rapporto tra la differenza delle ordinate e la differenza delle ascisse fra due punti distinti della retta,

(

x

1

,

y

1

)

{\displaystyle (x_{1},y_{1})}

e

(

x

2

,

y

2

)

{\displaystyle (x_{2},y_{2})}

:

{

y

1

=

m

x

1

+

q

y

2

=

m

x

2

+

q

q

=

y

1

m

x

1

=

y

2

m

x

2

m

(

x

1

x

2

)

=

(

y

1

y

2

)

m

=

y

2

y

1

x

2

x

1

=

Δ

y

Δ

x

{\displaystyle {\begin{cases}y_{1}=mx_{1}+q\\y_{2}=mx_{2}+q\end{cases}}\Rightarrow q=y_{1}-mx_{1}=y_{2}-mx_{2}\Rightarrow m(x_{1}-x_{2})=(y_{1}-y_{2})\Rightarrow m={\frac {y_{2}-y_{1}}{x_{2}-x_{1}}}={\frac {\Delta y}{\Delta x}}}

Per una retta verticale, di equazione

x

=

x

0

{\displaystyle x=x_{0}}

, questa espressione è priva di significato: due distinti punti della retta hanno diverse coordinate

y

{\displaystyle y}

ma uguali coordinate

x

{\displaystyle x}

, quindi per calcolare il rapporto bisognerebbe dividere per zero (al contrario, in geometria proiettiva il simbolo

(

1

:

0

)

{\displaystyle (1:0)}

è ben definito).

Considerando la retta come grafico di una funzione

f

(

x

)

=

m

x

+

q

{\displaystyle f(x)=mx+q}

, il suo coefficiente angolare è la derivata della funzione:

f

(

x

)

=

m

{\displaystyle f'(x)=m}

(la retta tangente è la retta stessa).

Poiché due rette in forma generale,

a

x

+

b

y

+

c

=

0

{\displaystyle ax+by+c=0}

e

a

x

+

b

y

+

c

=

0

{\displaystyle a'x+b'y+c'=0}

, sono perpendicolari esattamente quando

a

a

+

b

b

=

0

{\displaystyle aa'+bb'=0}

, ne segue che due rette (non verticali)

y

=

m

x

+

q

{\displaystyle y=mx+q}

e

y

=

m

x

+

q

{\displaystyle y=m'x+q'}

sono perpendicolari esattamente quando il prodotto dei loro coefficienti angolari è

m

m

=

1

{\displaystyle mm'=-1}

.Questa condizione può essere riscritta come

m

=

1

m

{\displaystyle m'=-{\frac {1}{m}}}

, ed espressa dicendo che

m

{\displaystyle m'}

è l'antireciproco (opposto del reciproco) di

m

{\displaystyle m}

.

Insegnante prescolare puzzle online da fotoVista serale da Passo Giau puzzle online da fotoAttività Kermés Virtual 2021 puzzle onlineMappa degli Emirati Arabi Uniti 21. puzzle online da fotoBFDBHFDGFFR. puzzle online da fotoUno scenario invernale di una coropeway puzzle onlineScopri l'immagine puzzle onlineHenri Matisse puzzle online da fotoCartello stradale puzzle online da fotoPuzzle cavalluccio marino puzzle onlineNuvola Olga puzzle onlineKea Point nel Parco Nazionale del Monte Cook puzzle onlineCascate Vittoria uniche puzzle online da fotoRuota del potere e del privilegio puzzle onlinePuzzle 1 puzzle onlinemappa di viaggio puzzle onlineLA GLOBALIZZAZIONE puzzle online da fotoProva i puzzle puzzle online da fotoSegnala sdafhgjkjkhl. puzzle onlineArti e mestieri puzzle online da fotoULANGKAJI puzzle onlineMatrice LMC puzzle online da fotoTHICC #008 puzzle onlineuomo di pietra puzzle online da foto
sistema solare puzzle online da fotoMappa della Russia puzzle onlineRepubblica Ceca puzzle onlineMappa dell'Europa nel V secolo puzzle online da fotoSchema in 5 parti puzzle onlinepamayanan puzzle online da fotoSolo un orologio puzzle online da fotounità di trazione puzzle onlineGiochi di quote puzzle online da fotoPuzzle invernale puzzle onlineSopravvissuto: Spedizione Spitsbergen puzzle onlineLago ghiacciato puzzle online da fotoBluff Rock puzzle onlinesegno di Hollywood puzzle online da fotoBeobachtungspunkte Weitsprung puzzle onlineParque Desportivo de Mafra puzzle onlineIl puzzle aggiunto sarà visibile a tutti puzzle onlineIndovina la personalità puzzle online da fotoPuzzle delle Alpi puzzle online da fotoSciare al sole puzzle onlineGeonight - Kazakistan. puzzle online da fotoRevisione M5 puzzle online da fotoCircle of Colors. puzzle onlineRiunione del team mdr puzzle online
Copyright 2024 www.epuzzle.info Tutti i diritti riservati.