Геометрия - онлайн пъзели
Геометрия
Геометрията (от старогръцки: γεωμετρία; от γῆ-, „земя“, и μέτρον, „измерване“) е клон на математиката, един от най-ранните, наред с аритметиката. Той изучава свойствата на пространството, свързани с разстояние, форма, размер и относително положение на обектите в него.До XIX век геометрията остава почти изцяло ограничена до създадената през Античността Евклидова система, базирана на фундаментални концепции, като точка, права, равнина, разстояние, ъгъл, повърхнина и крива.Няколко открития през XIX век разширяват драматично обхвата на геометрията. Едно от първите сред тях е Гаусовата превъзходна теорема, според която гаусовата кривина на дадена повърхнина е независима от вместването ѝ в определено евклидово пространство. От това следва, че повърхнините могат да бъдат изследвани сами по себе си, въз основа на което са развити теорията на многообразията и римановата геометрия. По-късно през XIX век се установява, че без да се стига до вътрешни противоречия може да се развият геометрии, нарушаващи аксиомата за успоредните прави – неевклидови геометрии. Не след дълго те намират практическо приложение в области на физиката, като общата теория на относителността.
През следващите десетилетия обхватът на геометрията продължава да се разширява и в нея се разграничават множество подобласти, въз основа на използваната методология – диференциална геометрия, алгебрична геометрия, изчислителна геометрия, алгебрична топология, дискретна геометрия и т.н. – или на игнорираните свойства на евклидовите пространства – проективна геометрия (отчита само разположението на точките, но не и разстоянията и успоредността), афинна геометрия (пренебрегва ъглите и разстоянията), крайна геометрия (пренебрегва непрекъснатостта) и други.
Първоначално създадена като модел на физичния свят, геометрията има приложения в почти всички природни науки, както и в изобразителното изкуство, архитектурата и други дейности, свързани с графиката. Геометрията намира приложение и в области на математиката, които на пръв поглед нямат нищо общо с нея. Например, методите на алгебричната геометрия са в основата на доказателството на Андрю Уайлс на последната теорема на Ферма, задача, първоначално поставена в контекста на елементарната аритметика и останала неразрешена в продължение на столетия.